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3Department of Computer Science, Brown University, Providence, RI, United States, 4College of
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Infectious diseases, like COVID-19, pose serious challenges to university
campuses, which typically adopt closure as a non-pharmaceutical intervention
to control spread and ensure a gradual return to normalcy. Intervention policies,
such as remote instruction (RI) where large classes are offered online, reduce
potential contact but also have broad side-effects on campus by hampering the
local economy, students’ learning outcomes, and community wellbeing. In this
paper, we demonstrate that university policymakers can mitigate these tradeoffs
by leveraging anonymized data from their WiFi infrastructure to learn
community mobility—a methodology we refer to as WiFi mobility models
(WIMOB). This approach enables policymakers to explore more granular policies
like localized closures (LC). WIMOB can construct contact networks that capture
behavior in various spaces, highlighting new potential transmission pathways and
temporal variation in contact behavior. Additionally, WIMOB enables us to design
LC policies that close super-spreader locations on campus. By simulating
disease spread with contact networks from WIMOB, we find that LC maintains
the same reduction in cumulative infections as RI while showing greater
reduction in peak infections and internal transmission. Moreover, LC reduces
campus burden by closing fewer locations, forcing fewer students into
completely online schedules, and requiring no additional isolation. WIMOB can
empower universities to conceive and assess a variety of closure policies to
prevent future outbreaks.
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1. Introduction

University campuses are often hotspots for infectious disease outbreaks and hence are

targeted for interventions. In the wake of the Coronavirus Disease (COVID-19) (1), the

U.S. witnessed more than half a million cases at universities (2). On the event of

infectious disease outbreaks, colleges must make crucial decisions to ensure continuity of

operations in safe way (3,4). Controlling the disease at universities can be pivotal to

securing the surrounding environment (5). To reduce on-campus infections and the

likelihood of superspreading events, a recommended form of non-pharmaceutical

intervention (NPI) is partial closure of the campus (6).
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http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1060828&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1060828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1060828/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1060828/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1060828/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1060828/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1060828
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Das Swain et al. 10.3389/fdgth.2023.1060828
During COVID-19, advancement in teleconferencing

technology equips universities to continue operations by adopting

a form of campus closure that relies on remote instruction (RI)

(7). As a consequence, the campus community has fewer

opportunities to visit spaces, such as classrooms, to congregate

and risk transmission (8,9). One common approach campuses

consider to design RI policies is to use enrollment data (EN) to

assume contact and therefore, offer large classes online while

other classes remain in person (10,11). In fact, during

COVID-19, 44% colleges and universities in the U.S., primarily

offered instruction online (12). However, these policies can still

have broad, negative, and indiscriminate impact on the

community by forcing students into completely remote course

schedules. Such policies can have adverse effect on learning

outcomes (13), where students can lose close to 7 months of

education (14). Additionally, RI can disincentivize students to

stay on campus and thus, universities incur losses in auxiliary

revenue (e.g., boarding, parking, dining, etc.) (15,16), with

universities standing to lose up to 50 million because of unused

services (17). Even the local population unaffiliated with the

university takes sustains losses to business due to university

closures (18,19). Furthermore, with socioeconomic disparities and

heterogeneous household contexts, the demands of remote
FIGURE 1

The WiFi mobility models (WIMOB) methodology uses anonymized network lo
logs reflect timestamps when people’s devices associate with access points
bipartite graph that describes people (e.g., P1, P2) visiting campus locations (
proxy their presence, we estimate collocation (e.g., P1 and P2 were collocat
use the collocation network construct a SEIR–based epidemiological ABM
mobility behavior to evaluate and inform policy. (C)–top-left: Mobility on cam
in the Fall semester of 2019. Edges only connect points of significant dwel
form of broad closure which affects a large number of students and lo
parsimoniously identify a small set of spreader locations within buildings and
evaluate these policies under different budgetary constraints and various b
Avoidance). Our study shows that LC policies provide equal or better con
compared to RI.
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instruction can lead to added anxiety and stress among students

(20,21). Relying on RI, university campuses struggle to balance

community health with the demands of learning, economy, and

broad wellbeing (22). Instead, there is a need for a more versatile

approach to design closure policies that empowers policymakers

to accurately assess impact of closure interventions and model

more data-driven targeted intervention strategies.

This paper showcases a new approach that universities can take

to design closure policies by leveraging data from their existing WiFi

infrastructure. Our methodology, WiFi mobility models (WIMOB),

involves constructing anonymized mobility networks of campus

(Figure 1A), which helps determine extended periods of

collocation—or “proximate contact” (23)—between individuals to

describe contact networks on campus. Particularly, WIMOB enables

a more expressive toolkit for university policymakers that

represents contact longitudinally and allows them to assess closure

at the granularity of a room, suite, or hall. Thus, it lends itself to

the design of targeted interventions that focus on localized

closures (LC). We demonstrate the utility of WIMOB with data

collected over two years, of approximately 40,000 anonymous

occupants and visitors of the Georgia Institute of Technology

(GT), a large urban campus in the U.S.—including about 16,000

undergraduate students, 9,000 graduate students, and 7,600 staff
gs to model campus mobility for localized closures (LC) (A) WiFi network
(APs) on campus. WIMOB mines these logs to characterize mobility as a
e.g., L1, L2) during different times (e.g., t1, t2). Since people’s devices can
ed at L1 at t1), and movement (P2 dwelled at L1 and then at L2). (B) We
, calibrated to Fall 2020 incidence of COVID-19 (C ) WIMOB highlights
pus between the top 100 most frequented locations on the GT campus
ling and thus do not represent pedestrian routes. (C)–top-right: RI is a
cations. (C)–bottom-right: By contrast, we propose to use WIMOB to
design LC policies. (C)–bottom-left: We use our epidemiological ABM to
ehavioral scenarios (Persistence, Non-Residential Avoidance, Complete
trol on the disease spread, and yet minimize the burden on campus
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members. In general, on comparing WIMOB to EN as an approach to

model contact, we find that WIMOB captures contact behavior at a

community scale for a variety of campus spaces, describes

temporal variations in contact, and provides a better estimate of

local context by being aware of occupancy and the non-student

population. Using WIMOB also reveals that EN overestimates the

impact of RI on reducing contact on campus. Hence, we propose

a less burdensome alternative to RI, by deriving more targeted LC

policies based on WIMOB (Figure 1) (indeed EN is too coarse-

grained for designing targeted LC policies).

We further exhibit that LC presents better disease control

outcomes than RI by constructing and simulating an agent-based

epidemiological model (ABM) over the people–people contact

networks (Figure 1B) derived from the collocation identified with

WIMOB (Figure 1A). Our ABM was calibrated with GT

on-campus COVID-19 cases from the Fall semester of 2020 (24)

and infection rates from Fulton County (25). To compare the

effect of interventions, we construct a counterfactual semester—

that is unaltered by other policy–induced behaviors of 2020—by

leveraging WiFi data from Fall 2019 to determine the contact

structure of the simulation. We assess the effectiveness of closure

NPIs (Figure 1C) by simulating COVID-19 under various

behavioral scenarios. We find LC is comparable to RI in

controlling total infections but more effective at reducing the peak

infections and internal transmission. Additionally, LC targets fewer

locations, forces fewer students into fully online schedules, and

does not isolate any more people than RI—illustrating that

WIMOB can help universities devise highly-specific closure policies,

like LC, which can contain disease spread and mitigate campus

disruption in comparison to RI policies.

Our methodology also promises other advantages. Mobility

generally has been used to dynamically model disease spread of

influenza (26), rubella (27) and COVID-19 (9,28) showing the

effectiveness of mobility restrictions at a regional–, or city–level

(29–33). These studies typically rely on cell tower localization or

aggregating GPS information from mobile phones (34). Neither

of these data sources is easy to access for university campuses. At

the same time, studies to infer campus mobility networks have

relied on accessing user devices with specialized data logging

applications (e.g., contact tracing mobile apps) (35–38), but these

approaches are typically constrained for disease modeling

because they require mass adoption to represent the entire

community and continuous maintenance of software is needed to

capture longitudinal behavior changes. In contrast, our work

repurposes already existing managed WiFi networks to model

mobility, which provides room level granularity for mobility

(39–42) and consequently indicates proximate contact (23).

Much like EN, universities internally archive such data over a

long term for other purposes and do not need to install any

additional surveillance infrastructure to access it. Prior work has

repurposed such data for campuses of size 10,000–50,000 in

different locations including Singapore, the U.K., and the U.S

(39,43). With the appropriate privacy considerations, a university

can obtain such data at a low cost, continuously and

unobtrusively. The possibility of pandemic still looms large in the

future (44,45). As campuses prepare for upcoming semestera and
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unforeseen contagious diseases of tomorrow, WIMOB presents

an attractive and practical method to inform better public

health policies.
2. Materials and methods

This section summarizes (i) the data used to derive contact

networks and policies, and (ii) the dynamics of our simulation

and calibration approach. Additional information for every

subsection is present in Supplementary Material, Methods.
2.1. WiFi mobility

Here we describe the data for our methodology, WiFi mobility

models (WIMOB) and the process to yield Localized (LC) policies.

2.1.1. Data use and access
The IT management facility at Georgia Tech (GT) accumulates

WiFi access point logs over time. This is common in most

universities with managed WiFi infrastructure. We actively

collaborated with IT management to define safety and security

safeguards that allow us to obtain a de-identified version of these

raw logs. Before accessing the data we established a data-use

agreement and an ethics protocol that was approved by the

Institutional Review Board (IRB) at Georgia Institute of

Technology (Protocol H20208). For the WiFi data, we were

provided access to logs from Fall 2019 and Fall 2020. We

processed these logs to characterize mobility (WIMOB) and it

encompasses all 40,000 unique visitors that connected to the

network via 6,959 different access points (41). The logs did not

contain any personally identifiable information and locations are

also coded. The logs indicated the WiFi access point (AP) a

device associates with and can therefore be used to infer dwelling

locations of users across the entire campus. This is limited to

indoor spaces where APs are located and the scope of this

localization is at the granularity of a room or suite (39,43)). For

EN we only used aggregate insights for enrollment, which were

derived from course registration transcripts. Note, we did not

cross-identify any students. We used publicly accessible course

schedules to approximate schedules of de-identified nodes and

infer if they were students or staff, and non-residential or

residential. We elaborate on our data in Supplementary

Material, Data.

Note. Like most universities, GT’s managed WiFi network is

not equipped with any Real-Time Location System (RTLS)

(46,47). RTLS systems use Received Signal Strength Indicator

(RSSI) values from multiple neighboring APs to provide high

precise localization of individuals in terms of time and space.

However, deploying such systems requires surveying the entire

network. Additionally, precision localization raises more privacy

concerns. These factors together make it challenging for

universities to justify the deployment of RTLS, unlike small retail

settings that can monetize RTLS insights directly (e.g., insights

on footfall can be tied to improving revenue).
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2.1.2. Contact and movement networks
WIMOB leverages the logs to create bipartite graphs Kt , for each

day t, which connect P users to L access point locations

(Figure 1A). Any edge, {p, l}i indicates the ith instance when a p

was dwelling at l. These edges describe the time period of

dwelling. Subsequently, by comparing all edges in Kt we can

infer if different individuals are collocated near an AP to create a

contact network, Gt , for each day t—between any collocated

pi, pj [ P. These networks define the contact structure for an

epidemiological agent-based model at every time-step. Similarly,

by inspecting the sequence of dwelling locations for any p in

graph K , we compute a mobility network, Ht—between locations

l [ L. In our approach, we considered collocation as a form of

proximate contact—people in the same room—and therefore

established collocation only when this occurred for “an extended

period” (23). By varying this threshold between 30 and 40

minutes we found the contact networks to be structurally similar

as their clustering coefficients (over the semester) were highly

correlated (r ¼ 0:97). In our experiments, we used the 40 minute

threshold as it was more computationally less expensive. We

provide more details of our approach in Supplementary

Material, Data Processing and in Supplementary Material,

Modeling Contact and Movement.

2.1.3. Modeling policies
We compared the disease outcomes and burdens of 2 policies,

Remote Instruction (RI) and Localized Closure (LC), both of which

are modeled with WIMOB.

Remote Instruction (RI): The status quo for data-driven policies

offers strictly online instruction for large class enrollment,

while continuing the other classes in person. When using EN

to model contacts, we implemented RI by removing

connections between students who were only in contact

through courses of size �30. When using WIMOB to model

contacts, we removed connections between students if they

were only connected because of collocations during scheduled

lectures of such courses.

Localized Closure (LC): We identified rooms–level spaces that are

highly central location nodes in the network. We removed

contacts between people who are only connected because of

collocating at these locations.

To further elaborate, for RI we inferred enrollment size of each

course in Fall 2019 by determining the number of unique

individuals that visited lecture locations during scheduled times.

After the first week, we applied the RI by removing all visiting

edges in Kt for any lc [ LRI if visits were during lecture times of

course c with an enrollment �30. This helped create

counterfactual contact networks G0
t . The removal of edges from

K described the mobility budget of RI and the structure of G0
t

indicated the risk of exposure budget. We designed LC with

these budgets by identifying locations for closure (LLC) with

different algorithms, such as PageRank (48), Eigenvector

Centrality (49), Load Centrality (50), and Betweenness Centrality

(51). When a location was closed, we removed all edges in Kt

connected to any lx [ LLC . We aggregated the movement graph
Frontiers in Digital Health 04
Ht over a week and apply the algorithms to identify locations.

Subsequently, we identified the number of top-ranked locations

to remove such that the resultant counterfactual contact network

G00
t has is within 1% of the budget. More details for closure

policies have been expanded in Supplementary Material,

Identifying Locations for Closure.

To make the comparisons between the closure policies, we

established fixed budgets to design LC based on the resource

utilization on RI. We considered 2 kinds of budgets, (i) mobility

reduction—to depict space use on campus, and (ii) risk of

exposure—to reflect testing capacity. Also note, response to

closure policies can lead to unpredictable side-effects in campus

behavior, particularly when a student’s schedule is entirely

online. Therefore, we design policies within three behavioral

scenarios (each with a varying budget):

[S1] Persistence: Irrespective of the locations closed or classes

restricted, individuals continue their other visiting behaviors.

[S2] Non-Residential Avoidance: Non-residential students stop all

visits to campus if they enrolled in at least 3 courses and the

policy forces their entire academic schedule online.

[S3] Complete Avoidance: Same as S2, but even residential students

avoid campus based on their schedule.

The budgets varied for different behavioral scenarios and we

only compared policies within the same scenario. Similar to

other works that model closure (11,52), we assume that when a

location is shutdown, the individuals who ought to have visited

that location isolated during the time. This is further elaborated

in Supplementary Material, Modeling Policies and Scenarios.
2.2. Disease simulation

Here we summarize our epidemiological model and calibration

process.

2.2.1. Agent-based model
We constructed an agent-based model (ABM) that captures the

spread of COVID-19 between individuals active on campus. This

ABM leveraged the contact networks produced by WIMOB. The

simulation iterated a time-step each day with the underlying

contact networks i.e., Gt for no interventions, G0
t for RI, and G00

t

for LC. Each agent in our ABM follows a modified version of

susceptible–exposed–infectious–removed (SEIR) template that

disambiguates the infectious compartment into asymptomatic and

symptomatic. New infections were introduced to the model either

externally or internally. External transmission arose because

individuals could contract the virus outside campus and bring

the infection back for local spread (7,53). We adopted data of

positive cases from Fulton county (25) with a scaling factor a to

estimate the probability that a susceptible individual, who is

active on campus, was infected from interactions that take place

outside campus. Internal transmissions are determined by p, as

the probability of susceptible individuals in contact with an

infectious one. We calibrated the parameters related to disease

transmission by training and validating our models on the
frontiersin.org
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positivity rate reported by GT surveillance testing (24).

Supplementary Material, Agent-Based Model details the disease

progression and describes the various parameters.
2.2.2. Calibration
In our study, we estimated three key parameters: (i) infectious

individuals at day 0, (ii) transmission probability between

infectious and susceptible individuals, and (iii) the probability of

infection transmission from contacts outside the network. We

estimated the range of optimal parameters for disease

transmission by minimizing the root means square error (r.m.s.e)

between the Georgia Tech surveillance testing positive rates

(24,54) and the observed positivity rate of the model every week

—percentage of new asymptomatic cases out of the total testable

population. The surveillance testing conducted by Georgia Tech

was designed for detecting individuals who contracted Covid-19

without showing Flu-like symptoms within the community (54).

We calibrated the model on the positivity rates on the first

5 weeks of Fall 2020. To attain a point estimation of the optimal

parameters, we fitted the model to predict trends in the

remaining weeks by running a numerical optimization algorithm,

Nelder-Mead (55). To account for quantitative uncertainty, we

estimated a range of parameters, within 40% of optimum r.m.s.e

(30). For other model parameters, we adopted values proposed

by previous studies on similar populations (56–58). Table 1

shows a full list of our parameters.

Note that our calibration characterized latent factors associated

with pandemic-related cautious behaviors, including the

relationship with external transmission. And these factors could

be related to “county characteristics, partisanship, media

consumption, and racial and ethnic composition” (8). To account

for the effect of these varying latent factors on disease outcomes,

we performed additional calibrations for hypothetical variations

in disease spread. For these analyses we kept the GT mobility

behavior constant while calibrating the model on different time

periods of surveillance testing and on positivity rates of different

U.S. universities—University of Illinois at Urbana-Champaign

(59) and University of California (60), Berkeley. We evaluated RI

and LC on these variations and describe the design of these

complementary experiments in Supplementary Material,
TABLE 1 Model parameters of the ABM.

Parameter Definition
p Transmission probability: For any edge between a susceptible and infecti

probability that the susceptible person will enter into the exposed state. T

a Scaling factor of the normalized confirmed cases in the surrounding coun

I0 Proportion of population that is asymptomatic at day 0

pS Probability of exposed persons becoming symptomatic

DS Incubation period (days) since the first day of exposure

DAsym!R Asymptomatic duration (days); it is the time taken for an asymptomatic

DI , sI Time of an symptomatic entering isolated since the first day of exposure

DR , sR Time for recovery for a symptomatic, since the first day of exposure

pD Death rate under isolation

The variables p, a, and I0 are estimated by calibrating the simulation model on the

incorporating external cases from Fulton County. These parameters were found by v

Calibration provides additional details.
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Sensitivity Analyses. See Supplementary Material, Calibration

for details on the calibration process and results of all variations

are in Table S3.
3. Results

We present two sets of analyses in our work. The first set

contrasts structural characteristics of contact networks

described by WIMOB with current practices that use enrollment

data (EN). In the next set, we used WIMOB to build an

epidemiological model (an agent-based model over the contact

networks, referred to as ABM) and analyze the remote

instruction (RI) and localized closure (LC) interventions in

terms of their differences in dynamic disease-control outcomes

and burdens to campus.

Note, throughout the paper we use the small-caps to

denote different methodologies to model contact (WIMOB

and EN) and sans-serif to denote different intervention

strategies (RI and LC).
3.1. WIMOB provides local, holistic and
dynamic structural insights for contact
networks on campus

Studies on RI policies tend to assume that contact in

universities is largely informed by EN—transcripts showing which

courses a student is registered for, or “enrolled” into. EN can

provide structural insights on density of connections and disease

transmission paths to inform modeling disease simulations (61).

However, such static data can overestimate attendance and ignore

overlap between courses (via instructors) and organic interactions

outside classes (e.g., waiting areas, dining, parties, and extra-

curricular activities). Therefore, using EN can overemphasize the

disease-mitigating structural changes to the network by RI

interventions. By contrast, WIMOB is more grounded in

community behavior as it captures multiple scheduled and

serendipitous contact situations dynamically over the semester.

We compared the features of contact networks constructed with
Value Std Source
ous individual in the contact network, p is the
his only dictates internal transmission

0.034 0.007 Calibration

ty (S1). This is the parameter for us to generate Iout(t) 0.032 0.0032 Calibration

0.012 0.0009 Calibration

0.66 - (56)

5 - (56)

person to recover since the first day of exposure 7 - (56)

of a symptomatic person 8 2 (57)

12 2 (58)

0.0006 - (58)

first 5 weeks of positivity rates provided by GT surveillance for Fall 2020, while

alidating the ABM on the remaining weeks of Fall 2020. Supplementary Material,
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WIMOB, against networks constructed with EN using data from GT

for Fall semester of 2019 (August 19–December 14), prior to any

COVID-19 reported cases in the U.S. EN approximates contact

based on students enrolling for classes that could potentially

collocate them in the same room during lectures. WIMOB infers

contact when any two individuals actually collocate near the

same WiFi access point (41,42) for extended period (see

explanation in Supplementary Material, WiFi Mobility). We

found that WIMOB rendered new insight into contact on campus

that was invisible to the EN methodology.

3.1.1. WIMOB characterizes temporal variation in
proximity

Variation in contact over the semester would naturally impact

the severity of disease spread. However, EN describes a static

network that does not capture such dynamics (Figure 2A).

Instead, we found that WIMOB shows contacts got sparser over

the semester. Figure 2C presents a notable decline in contacts

after the first two weeks, which coincides with multiple

orientation seminars and the so-called “course shopping” period

of Fall 2019. In fact, contact decreased considerably in

classrooms, with a steeper slope possibly because of reduction in

attendance. WIMOB was able to reveal other observable changes,

such as drop in contacts during exam period (week 15) and

increase after fall recess (week 10). EN rendered a highly

connected static network, which can miscalculate the speed at

which a disease spreads. By contrast, the longitudinal behavior

represented by WIMOB can help universities anticipate disease

spread more accurately.
FIGURE 2

Results show difference in structural characteristics of contact networks from
overestimates connections (grey edges) between students (green nodes) and
students to be connected in a single component, but WIMOB reveals (red e
(those not on campus are isolated and shown in the circumference). Mo
semester. (B) EN depicts campus contacts to be connected closely into a “

captures interactions outside classrooms we observe that for the first 6 wee
reported by EN. (C) Enrolling into a course does not necessitate physically co
to be entirely absent). WIMOB reflects this behavior and highlights a decline
policymakers anticipate the effect of closure policies by describing how
instruction leads to a 94% reduction in contacts and 50% increase in transm
as EN (Ext.)). However, the estimate is significantly lower when measured usin
policies and in turn motivates new policies that can be designed and evaluate
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3.1.2. EN overestimates contact-based risk
Campuses can assess risk of an outbreak by characterizing the

number of individuals that would be at risk of infection through

contact. In our study, EN indicated 99% of the individuals on

campus were clustered in a single component—if any of them

would have been infected in Fall 2019, the entire component

would be at risk. From the lens of EN a virus can exhaust an

entire population with infection very early. However, WIMOB

showed that only 69% of the population was connected in a

single component (Table S2). This difference is because WIMOB

can distinguish how many individuals are active on campus.

Therefore, WIMOB provides a pragmatic estimate of risk by

grounding it in local occupancy and helps campuses budget for

resources better.

3.1.3. WIMOB reveals different paths for disease
transmission

Reports suggest that a key contributor to cases in the pandemic

is actually clustering of individuals in non-academic spaces (7).

However, EN does not depict a holistic view of campus contact.

It is limited to classrooms and, therefore, fixates on contacts in

lectures, while ignoring other spaces. In fact, WIMOB showed that

in the first 6 weeks of Fall 2019, the shortest path among

individuals was smaller than that approximated by EN

(Figure 2B). With WIMOB, we observed new paths in the contact

network from situations outside classes. On a given week,

WIMOB showed the average shortest path with contact is

3:26(+ 0:5) when only considering lectures, whereas capturing

all contexts reduced the average shortest path to 2:67(+ 0:28).
EN (course enrollment) and WIMOB (campus mobility). (A) In general, EN
does not anticipate changes through the semester. EN assumes 90% of
dges) that on any given week only 69% are in the largest component
reover, WIMOB reveals that density of connections changes over the
small world.” WIMOB shows that contacts evolve over time. As mobility
ks the shortest transmission path between people is shorter than what is
llocating with the class for extended periods (students can also choose
in average contacts over time. (D) These structural differences can help
it fragments the underlying contact network. EN shows that remote
ission path length (similar to numbers reported in prior work (11), shown
g WIMOB. As a result, WIMOB emphasizes the limits of remote instruction
d with actual on-campus behavior.
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Characterizing shorter pathways is crucial for policymakers as

closure policies by design aim to disconnect these pathways.

3.1.4. EN overemphasizes the impact of remote
instruction

Prior work uses EN to posit that RI reduces contact and in turn

significantly fragments the network for disease spread in

universities (10,11). We evaluated the effectiveness of such a

policy if it were applied in Fall 2019, with both WIMOB and EN.

Figure 2D shows that RI with EN reduced contact by 94% and

increases shortest path by 50%. However, the same intervention

with WIMOB showed a relatively milder impact (contact

reduction 45%; shortest path increase 11%). This reinforces that

contact outside courses are significant and remain unaffected by

enrollment-oriented policies like RI. WIMOB provides a more

encompassing view of the structural effects to a network and

motivates design of more impactful closure policies.
3.2. Epidemiological model built with
WIMOB shows that LC yields better infection
reduction with lower burden

As outlined above, EN does not comprehensively capture the

contact on campus. By contrast, contact networks built with

WIMOB demonstrate new structural insights, which are critical

to describe disease spread. A campus is composed of many

different spaces, and EN does not have the flexibility to design

closure of such spaces or assess its impact. These drawbacks

naturally motivate a new approach to design interventions.

Since WIMOB mitigates the limitations of EN, we leveraged it to

demonstrate the effectiveness of localized closure (LC) policies.

We used WIMOB to define the contact structure of each day and

simulate COVID-19 with an agent-based model. Our ABM was

overlayed by a modified SEIR compartmental model for

COVID-19 for each agent. GT also had implemented a robust

surveillance program on campus. Hence we calibrated the ABM

on the positivity rate for COVID-19 for GT (24) in the first

5 weeks of Fall 2020 also incorporating external seeding from the

surrounding Fulton County, GA (25). We validated our model

by predicting future trends for the rest of Fall 2020. For

robustness, we performed additional calibrations by varying time

windows and university context (details in Supplementary

Material, Sensitivity Analyses). We studied interventions by

applying the ABM over the contact networks produced by

WIMOB with data from Fall 2019—a counterfactual to Fall 2020

if no closure had occurred (see Supplementary Material,

Simulation Model for further details). The results in the main

article refer to LC policies derived using PageRank (48). The

corresponding results for other centrality algorithms are available

in the Supplementary Information.

3.2.1. WIMOB can model RI and LC interventions
with various configurations

Prior works show a few locations are responsible for majority

spread (30) and restricting movement between them leads to
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greater control (62). We found that, if COVID-19 spread

through Fall 2019 (a regular semester), the cases rose after

7 days (Figure 3A). Therefore, we applied both RI and LC

interventions after the first week. To devise interventions,

WIMOB estimated how RI uses the budget and then designed

LC to match this budget under every behavioral scenario.

Table 2 describes how the budget for each policy varies.

Additional details are present in Supplementary Material,

Modeling Policy and Scenarios.

We present differences between LC and RI based on three

infection reduction outcomes; peak infections (maximum active

cases on a given day), internal transmission (exposure from

infected individuals on campus), and total infections

(cumulative cases at the end of the semester). Additionally, we

measured the burden of policy interventions with the number

of locations closed—requires resources to monitor and maintain

super-spreader locations, the percentage of students that avoid

campus—disruption to learning outcomes (13,20), and the

percentage of individuals completely isolated—worsens mental

wellbeing (64).

3.2.2. LC cause greater reduction in peak
infections, while affecting fewer locations

Controlling peak infections relaxes the burden on a university

to support positive cases for any given day, and allows resources

to be distributed over time. In all behavioral scenarios of our

simulation of Fall 2019, we observed that the peak reduction

was significantly better in LC (Figure 3) than RI. While RI

impacted 58 different locations (classrooms and lecture halls),

in S1 and S2, LC achieved better outcomes by closing fewer

locations. For example, in S2, RI achieved a 28:9% peak

reduction, but LC showed reductions of 49:3% (mobility

budget) and 48:1% (exposure risk budget). This was attained by

closing 38 or 50 locations respectively. Therefore, with such

policies, policymakers need to restrict fewer locations to

remarkably minimize the pressure of active infections on

campus (e.g., diagnoses, treatment, quarantining).

3.2.3. LC lead to comparable reduction in total
infections, while keeping more students on
campus

Universities want to minimize the number of infected cases

while ensuring majority of the population remains active on

campus to continue successful operation. In Scenario S1, the

total number of infections reduced by both LC was more

than the reduction shown by RI. were similar. For other

behavioral scenarios the total infection reduction between

policies was similar (Table S2). In contrast, the impact the

policies had on the student schedules was remarkably

different. RI forced multiple students to adapt to fully online

schedules. In Scenario S2, 9% of students did not visit

campus and in S3, 27% of students did not visit campus. On

the other hand, in LC, the number of students expected to

avoid campus could be as low as 0 and never exceeded 12%.

Besides sustaining economic loss to the campus, remote

instruction can increase anxiety among students and hinder
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TABLE 2 Comparison of policies in terms of controlling the disease and impacts on campus in Fall 2019.

Behavioral scenario S1: Persistence S2: Non-res avoidance S3: Complete avoidance

Policy RI LC RI LC RI LC

Budget - Mobility
(95:5%)

Exposure risk
(18,800)

- Mobility
(92:3%)

Exposure risk
(16,900)

- Mobility
(69:2%)

Exposure risk
(12,700)

Infection reduction outcomes
Peak infections (%) 25.34 (+12) 36.92 (+14)�� 34.30 (+13)�� 35.44 (+10) 49.33 (+11)�� 52.19 (+10)�� 61.62 (+7) 69.34 (+5)�� 64.44 (+6)��

Total infections (%) 6.99 (+5) 10.63 (+6)�� 8.19 (+5)�� 14.88 (+4) 13.96 (+6)� 15.67 (+6) 33.00 (+5) 33.4 (+5) 26.94 (+5)��

Internal
transmissions (%)

17.13 (+9) 22.62 (+11)�� 21.01 (+11)�� 27.58 (+8) 35.35 (+12)�� 39.20 (+11)�� 54.00 (+8) 70.89 (+7)�� 60.90 (+9)��

Burdens on campus
Locations affected 58 18 19 58 38 50 58 192 124

Students avoiding (%) 0 0 0 9:30 0:20 0:45 27:21 12:45 6:57

Completely isolated on
campus (%)

5:42 8:40 8:40 5:95 5:72 5:71 7:09 5:18 5:23

Within each behavioral scenario, we performed the Kruskal-Wallis H-Test (63) to compare outcomes of LC with RI. We found that LC leads to significantly improved peak

infection reduction and internal transmission. In terms of reduction in total infections, the outcomes were comparable in general but varied by specific scenarios. In

addition, every policy also exerted some burden on campus, either in terms of locations affected, students avoiding campus or isolation. We observed that LC policies

focus on fewer locations (except in S3). Moreover, these policies affected fewer student’s schedules and therefore fewer people avoid campus due to completely

remote schedules. Finally, LC does not increase the percentage of people completely isolated on campus (p-value: � ,0.01, �� ,0.001).

FIGURE 3

Results of policy interventions with our calibrated ABM on contact networks from Fall 2019, derived from WIMOB (A) This graph compares the mean active
infections between LC and RI. LC show improved outcomes (shaded regions) even when constrained to the same restrictions of RI policies. (a)–inset:
After the first wave, even though LC shows slightly higher active infections, the cumulative infections are still lower, especially those that are a result
of internal transmission on campus. Figures S10–S17 show changes in cumulative infections under different policies, including 2:5th and 97:5th
percentile intervals. (B) Outcomes of policies within the same behavioral scenario are shown with boxes of the same color (RI policies are solid, LC
policies are hatched) and box heights represent the 2:5th and 97:5th percentile. In S1, even though LC and RI are equally burdensome in terms of
students avoiding campus, LC shows improved outcome on peak reductions. In fact, for the other scenarios, LC shows better outcomes than RI,
without forcing as many students into online schedules, and, therefore, being even less burdensome with greater impact. Figure S6–S9 show
comparison of all policy outcomes with different budgets.
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learning outcomes (20,21). Compared to RI, LC offers

policymakers a way to defend against turnover in the student

population, without compromising overall control of disease

spread (Table 2). Limiting the number of students that avoid

campus helps preserve on-campus businesses (18,19) and

minimally disrupts the student wellbeing.
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3.2.4. LC cause greater reduction in internal
transmission without causing further isolation on
campus

Universities are responsible for limiting spread on campus, but

they must also ensure that aggressive policies do not worsen mental

wellbeing of the community. In terms of internal transmission the
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reduction is significantly larger with LC (Table 2). However, when

LC restricted the infections early in Fall 2019, it left more

individuals susceptible to external transmission. College student

behavior outside campus on weekends and breaks is known to

impact local transmission (65). When policymakers consider LC

they should also consider policies on re-entry or required testing

based on off-campus activities. In terms of isolating individuals

on campus, it’s notable that LC and RI were similar in S2.

Interestingly, in S3, where LC closed more than 100 locations,

the percentage of isolated individuals per week was less than that

of RI. This finding implies that LC can keep individuals on

campus without forcing them into complete isolation. Here

“isolation” refers to no form of proximate contact with any

individual on campus—extreme social distancing where

individuals are not even collocated in the same suite or hall.

While social distancing is a recommended countermeasure for

COVID-19 (8), complete isolation can have adverse effects on

psychological wellbeing (64,66,67). LC can help alleviate concerns

of closure interventions that increase loneliness and limit social

connectedness (66).

3.2.5. LC identifies a wider variety of auxiliary
spaces

By using WIMOB to design LC we were able to identify

locations for closure at the granularity level of rooms, including

unbound spaces such as lobbies and work areas. As policy design

budgets changed with every behavioral scenario we found that

LC identified different types of locations for closure. First, in S1,

we found that most locations that LC targeted are a subset of the

auditoriums–like rooms where large classes would take place in

Fall 2019. Note, LC needs to restrict only a few such spaces to

utilize the same budget as RI. This is because, under S1, RI

policies only altered visits to lectures, while these spaces are used

for other purposes during other times (e.g., club activities and

seminars). We also noted that LC targeted “high traffic” locations

like conference center lobbies which are typically used as waiting

areas or for networking events. Next, in Scenario S2, we saw that

in addition to spaces mentioned earlier, interestingly LC further

restricted the use of smaller rooms (occupancy 13–35) which

would not be affected by RI (as only classes of size �30 are

offered online). LC also targeted areas in the recreation center

(which includes locker rooms and indoor courts for 4–20

people). This insight indicates that our methodology WIMOB

accounts for a diverse set of student activities. Moreover, we also

found a selection of spaces that would not be frequented by the

undergraduate population, such as lab areas and facility buildings

like the police station. Lastly, in Scenario S3, LC targeted closure

of activity in far more spaces than RI. However, the better

outcomes can be attributed to the fact that LC diversified the

potential restriction areas. LC restricted heavily used small study

rooms or breakout rooms (for 1–6 people). Furthermore, it

restricts use of spaces where multiple small groups of people can

organically assemble, such as cafes, dining halls, and reading

areas. We also observed that LC restricted activity in about 10

Greek Houses but does not target other housing areas—

demonstrating its ability to restrict social behavior that could
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amplify disease spread. Figure S18D shows the diversity in

locations for various LC policies.

3.2.6. Sensitivity and robustness analyses
The results above use an ABM calibrated on the positivity rate of the

first 5 weeks of Fall 2020. This rate can be influenced by many latent

factors (e.g., mask-wearing, hand washing, distancing, and compliance).

To study any effect of these variations, we also calibrated on different

time windows throughout the semester. We calibrate on weeks 5–9 and

10–14 in Fall 2020, and validate on the remaining semester. In both

cases, compared to RI, we found that LC still exhibits better reduction

in peak infections (up to 90%) and internal transmission (up to

77%). In the original calibration, LC maintained the same level of

total infections as RI, but with the new periods we found total

infections were substantially less than RI (Tables S8 and S9).

Another important variable for positivity is the wider context of the

campus e.g. urban/rural, the surrounding county, city, etc. To

investigate this, we also calibrated our ABM on the positivity rate of

different universities in the US in Fall 2020 (along with information

from their county to seed external cases). Consider this as a

hypothetical where the mobility of the GT community remains the

same but disease outcomes resemble a different campus. We

calibrated on data from University of Illinois at Urbana-Champaign

and University of California, Berkeley. We found no remarkable

differences from our findings with GT (Tables S10 and S11).
4. Discussion

Non-pharmaceutical interventions (NPI) are the first line of

defense for universities to respond to contagious diseases like

COVID-19 (68,69) and are also crucial to control infections and

continue operations until recovery. On a campus, a common form

of NPI is closure (70). Universities consider enrollment data (EN) to

design remote instruction (RI) for closure to support continued

operations safely (11). However, EN can misconstrue contact on

campus, and RI policies can have broad impacts despite their effects

on curbing the disease spread. This paper demonstrates that

repurposing logs from a managed WiFi network (WIMOB) can help

design effective localized closure policies (LC). We show that WIMOB

uncovers rich contact dynamics and provides policymakers multiple

dimensions to design policies like LC. We simulate COVID-19 with

an ABM that harnesses WIMOB to compare RI and LC. As

universities plan for future semesters, our results present evidence

that LC designed with WIMOB can lead to improved infection

reduction outcomes, while simultaneously relaxing burdens on the

campus caused by coarse-grained broad RI policies.
4.1. Generalizability for other contexts

In practice LC policies should be deployed in conjunction with

the other tools as well like testing, tracing, and quarantining.

WIMOB can complement disease-specific knowledge to identify

closure spaces. For example, small indoor spaces with poor

ventilation increase the risk of infection for COVID-19 (71), while
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other algorithm-identified locations for closure might not require

closure because users of a space are compliant with mask-wearing

and testing. Further, as a pandemic progresses and public health

guidance develops (72), with WIMOB, campuses can regulate the

restriction of LC policies and anticipate the path to “normal”

operations (3,4). Moreover, WIMOB captures various spillover

effects that cannot be captured in methods like EN. For instance,

with WIMOB we observe that the mobility in Fall 2020 was 39% of

that in Fall 2019 because the on-ground policies lead to certain

staff working remotely as well. With additional information,

WIMOB enables policymakers to model such scenarios and design

alternatives like LC with new budgets. Policymakers can use

WIMOB as a versatile tool to explore dynamic intervention

strategies as well. Prior work shows that staggering policy

restrictions could have variable impact on campus (73).

Accordingly, WIMOB could be used to build an adaptive version of

LC that updates at different points in the semester based on

expected mobility changes. Additionally, depending on campus

priorities and resource limitations, different campuses can use this

same data to model policies differently. The effectiveness of

reopening policies is expected to be sensitive to a campus’ specific

context that includes physical infrastructure, overarching

guidelines, and human compliance (5). For certain campuses

policies might not need to be constrained by exposure risk as

testing might be frequent, ubiquitous, and voluminous. Other

campuses could have limits on quarantining capacity.

Policymakers might even consider the cost trade-offs by actually

forecasting actual financial losses incurred by reduction in mobility

(31), or valuate loss of services based on community needs (74).

We elaborate on these considerations in the Supplementary

Material, Implications for Policy Design.
4.2. Operational considerations

Beyond assessing cost-benefits, universities need to devise practical

methods of obtaining, storing, and processing mobility of the

community as WIMOB. University can access logs from the managed

network internally as it is passively collected. Moreover, it does not

require any new form of surveillance sensing but universities must

revise terms of use and stay sensitive to community perspectives.

Despite population mobility being valuable for many applications

(75), accumulating localization data can be a major privacy concern

(76). Instead, operational applications need to conceive approaches

that only retain insights on locations to shutdown but not individual

data. Similarly, any operational use needs to employ differential

privacy to limit what stakeholders can learn from the data (77) (e.g.,

decision-makers can only get a list of candidate locations to close). In

the Supplementary Material, Discussion, we further detail

approaches to reconcile privacy, ethics and legal considerations.
4.3. Limitations and future work

For future investigations of better closure policies, researchers

and policymakers need to be cognizant of the limitations of our
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work. Our analyses capture heterogeneity in individual behavior

but does not account for differences in intrinsic vulnerabilities,

which are related to severity of risk (67,78,79) and disparity in

burden of shutdowns on demographic groups (30). WIMOB can

be extended with other streams of data to characterize sub-

contexts in the population and devise new forms of LC to

explicitly study the impact of policies on specific vulnerable

subgroups in the community. Additionally, our work explores the

avoidance based behavioral responses to closure interventions

with assumptions in line with prior work (11,52). Researchers

and policymakers can be interested in substitution behaviors

where the population visits new locations when others are closed.

WIMOB has the flexibility to model more nuanced spillover

effects. Exploring different ways to remove and reallocate edges

in the contact network is interesting future work. Lastly, WIMOB

was built on GT’s managed WiFi infrastructure with expansive

coverage reflecting a large proportion of the campus population

and its physical space. The coverage at other campuses might

vary depending on how the access points are setup as well as the

populations connectivity preferences. These variations can lead to

under-representation of certain behaviors during policy

evaluation. Thus, future studies can investigate the efficacy of

WIMOB by systematically simulating different configurations of

WiFi coverage. Further discussion in Supplementary Material,

Limitations and Future Work.
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